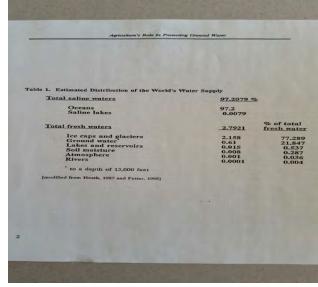
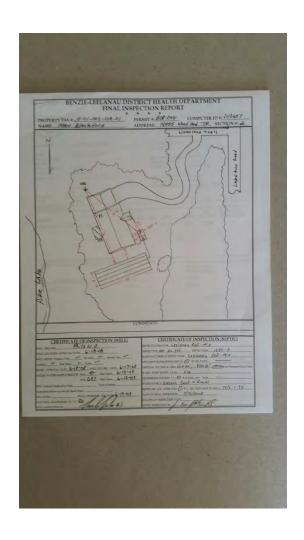


Rotary Well Drilling in Michigan



Why Groundwater



First Things First

Predrilling Site Review

Isolation distance to potential contamination sources.

Existing groundwater contamination near drilling site.

Minimum well depth requirement.

How many gallons per minute peak demand.

Effect on adjoining property with new well placement

Water sampling requirements established.

Permit issuance only after visiting site.

Minimum Isolation Distance

Animal/poultry yard	50 feet
Buried gravity sewer, cast iron/Sch 40	10 feet
PVC	
Buried pressure sewer	50 feet
Septic drainfield	50 feet
Septic tank	50 feet
Outhouse	50 feet
Septage waste disposal site	800 feet
Fuel storage tank >1100 gal.	300 feet or 50 feet (secondary contain.)
Building / roof line	3 feet
Surface water *	10 feet
Ag. Chem./fertilizer storage and prep.	150 feet

Rotary Well Drilling Rig

Rig Components

Drilling Mud and Bore Hole

Drilling Mud And Cuttings

Observing Cuttings and Well Rig

Well Screen and Gravel Pack

Setting Well Screen and Casing

Gravel Pack

Well Developing

REMOVES MUD FROM CASING

FLUSHES CHLORINE

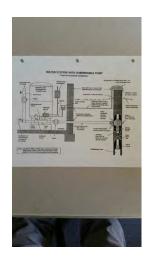
USES COMPRESSED AIR

DETERMINES IF PEAK DEMAND CAN BE MET FROM THE NEW WELL

PREPARATION FOR GROUTING

Static Water/ Flowing Well

Grouting the Annular Space "Bore Hole"



Pitless Adaptor and Final Hookup

Well Abandonment

Well pit and 4" steel well.

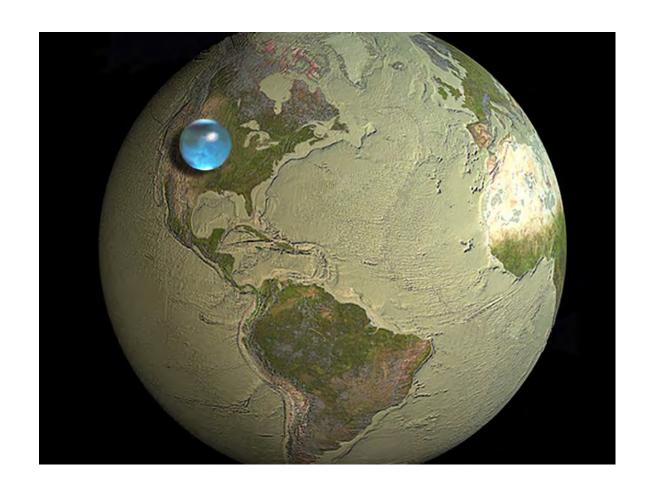
Well Log Submission

Drillers Field Notes

Completed Well Log Submitted Within 60 days

To Much Water

Stopping a Flowing Well



Our Job To Be Good Stewards

Thanks To:
B and Z Well Drilling
Cluff Well Drilling
Shoebridge Well Drilling